

Spiral Structure and Mass Inflows In Spiral Galaxies

Yonghwi Kim, Woong-Tae Kim

CEOU, Astronomy Program, Dept. of Physics & Astronomy, Seoul National University

The 7th Korean Astrophysics Workshop on Dynamics of Disk Galaxies October 21-24, 2013, Seoul National University, Seoul, Korea

Outline

- Discrepancy between the pitch angles of stellar and gaseous arms
- Arm extension in the gaseous medium
- Gas inflows driven by spiral arms

Arm Pitch Angles, p

Grosbol & Patsis (1998)												
Pitch angle i_2												
Galaxy	K'	Ι	v	Β Δ		range						
NGC 3223	-8°.8	-9°.4	-8°.8	-8°.7	0°.5	25-36"						
NGC 5085	-17°4	-13°0	-11°7	-10 [°] .9	0°.5	25-40"						
NGC 5247	-34°.1	-31°8	-29°.9	-27°4	0°.7	30-50"						
NGC 5861	-12°4	-11 [°] .8	-11°9	-	0°.5	20-35"						
NGC 7083	-22°1	-20°.3	-17°.6	-15°.0	1°.0	11-18"						

Red : Old Population Blue : Young Population

• Overall p_{gas} is smaller by ~2°-10° $p_{han} p_{*}$ for $p_{*} \sim 10^{\circ} - 30^{\circ}$, despite almost 1:1 correlation between them.

<u>No convincing theoretical argument</u> for the difference of the pitch angles between stellar and gaseous arms.

Arm Extension

- The Theory for spiral density waves
 - The stellar pattern extends up to;
 - Linear regime : corotation resonance (CR) or outer Lindblad resonance (OLR) (Toomre 1981; Lin & Lau 1979; Bertin+ 1989a,b; Zhang 1996)
 - Non-linear regime : the 4/1 resonance (Contopoulos & Grosbøl 1986, 1988; Patsis+ 1991)

X Uncertain whether the termination of gaseous arms corresponds to the resonance radii.

Angular Momentum Transport

- Secular changes in the orbits of stars and gas clouds by spiral arms (Lin & Shu 1964, 1966; Toomre 1964; Elmegreen 1995; Bertin & Lin 1996; Foyle et al. 2010)
 → It leads to overall gas inflows or outflows.
 - Roberts & Shu (1972, see also Kalnajs 1972)
 - Damping timescale due to the angular momentum exchange : ~1Gyr
 - Lubow et al. (1986)
 - Gas accretion rate : $dM/dt=0.2\sim0.4M_{\odot}yr^{-1}$ (solar neighborhood)
 - Consistent to the results of chemical modeling by Lacey & Fall (1985)
 - Hopkins & Quataert (2011)
 - Epicycle approximation to derive an analytic expression for dM/dt
 - Regarding angular momentum transport in these studies,
 - Ignored the <u>self-gravitational torque</u> under the <u>local</u> approximation.
 - Not considered <u>the effects of gas pressure</u>
 - Difficult to isolate the sole effect of the shock

Main Purpose of This Study

Using global hydrodynamic simulations,

- 1. We address the pitch angles and spatial extent of gaseous arms in comparison with their stellar counterparts.
- 2. We study how the gas drift rate depends on physical parameters of spiral arms.

Spiral Arm Model

- Ordinary disk galaxies with a flat rotation curve of $v_c=200$ km s⁻¹
- Logarithmic spirals (Local analog of Lin & Shu 1964, 1966)

$$\Phi_{\text{ext}}(R,\phi;t) = \Phi_0 \cos\left(m\left[\phi + \frac{\ln R}{\tan p_*} - \Omega_p t + \phi_0\right]\right)$$

- Number of arms : m=2
- Pitch angle of stellar pattern : $p_*=20^\circ$
- Arm strength is controlled by the dimensionless parameter

$$\mathcal{F} \equiv rac{m\Phi_0}{v_c^2 \tan p_*}$$
 with varying from 5% to 20% (Roberts 1969; Shu, Milione, & Roberts 1973)

- Pattern speed of the spiral arms
 - a) $\Omega_p = 30 \text{km/s/kpc}$ (Fast-arm Models) : CR at R=6.5kpc
 - b) $\Omega_p = 10 \text{ km/s/kpc}$ (Slow-arm Models) : CR at R=20 kpc

Numerical Method

- CMHOG Code (Connection Machine Higher Order Godunov)
 : Grid-based code in cylindrical geometry
- Self-gravitating and isothermal gaseous disk without magnetic fields.

Extent and Shape of Gaseous Arms

- Extension of spiral shocks
 - Fast-arm models : only up to R=18kpc
 - Slow-arm models : all the way to the outer radial boundary
- Pitch angle of gaseous arms, p_{gas}
 - Fast-arm models : *p*_{gas} ≪ *p*_∗
 - Slow-arm models : *p*_{gas} ≤ *p*_∗

Extension of Spiral Shocks

• We found empirically that quasi-steady spiral shocks exist only if

$$\frac{t_{\text{sound}}}{t_{\text{arm}}} = \frac{\mathcal{M}_{\perp}}{\sin p_*} \lesssim 25 + 100\mathcal{F},$$

• Perpendicular mach number :
$$\mathcal{M}_{\perp} = \frac{R|\Omega - \Omega_s|}{c_s} \sin p_*$$

- The time interval between two successive passages of the arms : $t_{arm} = \pi |\Omega \Omega_s|$
- The arm-to-arm sound crossing time : $t_{sound} = \pi R/c_s$
- Otherwise, the gas would <u>not have sufficient time</u> to adjust itself to one arm before encountering the next arm.

: The rapid rotation of the potential effectively makes itself smoothed significantly along the azimuthal direction.

Arm Extension in M83

Arm extension of M83

- R_{OLR}~5' (Lundgren+ 2004a,b)
- R~6' for CO & HI (Crosthwaite+ 2002)

$$\frac{t_{\text{sound}}}{t_{\text{arm}}} = \frac{\mathcal{M}_{\perp}}{\sin p_*} \lesssim 25 + 100\mathcal{F},$$

for $0.05 \le F \le 0.2$

- The termination radius of the gaseous arms in M83 is close to the OLR.
 - \hookrightarrow Still uncertain whether the OLR plays a central role in limiting the arm extent.
- The radius of 6' corresponds to $\mathcal{M}_{\perp}/\sin p_* \sim 23\text{--}30$.

→ The idea of arm termination by too large M_{\perp} is not inconsistent with the observed gaseous arms in M83 with F~5-10%.

Pitch Angles of Gaseous Arms

- The outfisets did tweeth, ptronged spock $\Delta p = p_\star p_{
 m gas}$ er downstream. (Kim & Ostriker 2002; Gittins & Clarke 2004) • In general, larger Σ_{shock} corresponds to smaller Δp . In fast-arm models, M_{\perp} vary systematically large with R, leading to $p_{ges} \ll p_{\star}$. • In the fast-arm models, M_{\perp} vary systematically large with R, leading to $p_{ges} \ll p_{\star}$. In slow-arm models, $M_{\perp} \ll 5$, so that shocks form close to the potential minima and thus have weak shocks compared to the show-arm models.
- - and thus have

Radial Dependence of Mass Drift

- <u>Inside CR</u>, the gas loses their L and moves radially inward.
- <u>Outside CR</u>, the gas gains their L and makes mass outflows.
- Inflow rates of the slow-arm models: $\dot{M}_{tot} \approx 0.3 - 3.0 \ M_{\odot} \mathrm{yr}^{-1}$ for F=5-20% $\langle \dot{M}_{tot} \rangle \approx 7\mathcal{F}(0.1 + 10\mathcal{F})(\Sigma/\Sigma_0) \ \mathrm{M}_{\odot} \mathrm{yr}^{-1}$

cf. Lubow et al. (1986)'s local models yield $\dot{M} \approx 0.2 - 0.4 \ M_{\odot} \mathrm{yr}^{-1}$ corresponding to F=3%.

Mass Inflows

• The radial drift of the gas

Combination of three processes:

$$\dot{M}_{\rm tot} = \dot{M}_{\rm shock} + \dot{M}_{\rm ext} + \dot{M}_{\rm self}$$

1) Dissipation of angular momentum at spiral shocks : $\dot{M}_{\rm shock}$ (Lubow+ 1986; Hopkins & Quataert 2011)

2) Torque by the external spiral potenital (Lubow et al. 1986)

$$\dot{M}_{\rm ext} = -\left(\frac{1}{R}\frac{\partial R^2 \Omega}{\partial R}\right)^{-1} \int_{-\pi}^{\pi} \Sigma \frac{\partial \Phi_{\rm ext}}{\partial \phi} d\phi$$

3) Torque by the self-gravitational potential

$$\dot{M}_{\rm self} = -\left(\frac{1}{R}\frac{\partial R^2\Omega}{\partial R}\right)^{-1}\int_{-\pi}^{\pi}\Sigma\frac{\partial\Phi_{\rm gas}}{\partial\phi}d\phi$$

Mass Inflow Rate in Slow-Arm Models

- $\dot{M}_{\rm shock} > 0$ inside the CR, as expected.
- $\dot{M}_{\text{shock}} : \dot{M}_{\text{ext}} : \dot{M}_{\text{self}}$ = 50% : 40% : 10%

(Averaged values over 5<R<15kpc)

• Torque by the self-gravity on the gas overwhelms the others outside the CR.

⇒ This is because the Toomre Q parameter is smaller at larger R.

Gravitational Torque Analysis

- NGC 4597 from HI gas observation (Garcia-Burillo et al. 2009)
 - The gravitational potential is computed on the NIR images.
 - They calculated the mass drift rate from this potential and column density of HI.

Haan et al. (2009)			Table 9Gravitational Torque Analysis					
Source	$\langle dL/L \rangle$		$\langle dL/L \rangle$		$dM_{\rm HI}/dt$	$dM_{\rm mol}/dt$	R _{max,HI}	R _{max,CO}
	HI	СО	HI	CO	$(M_{\odot} \text{ yr}^{-1})$	$(M_{\odot} \mathrm{yr}^{-1})$	(kpc)	(kpc)
NGC 3368	0.02	-0.50	0.12	0.55	0.04	-11.11	13.0	0.35
NGC 3627	-0.00	0.16	0.26	0.24	-0.10	50.13	6.0	0.75
NGC 4321	0.01	0.02	0.10	0.10	-0.18	1.03	18.0	1.2
NGC 4736	0.02	0.01	0.03	0.09	0.06	-0.01	8.5	0.62
NGC 5248	0.06	-0.02	0.13	0.02	0.49	-22.96	20.5	0.8
NGC 6951	-0.04	-0.05	0.09	0.10	-0.16	-4.29	29.0	1.0
NGC 7217	-0.01	-0.02	0.03	0.03	-0.01	-2.37	15.2	1.4

Summary

Morphologies

- Arm extension in the gaseous medium
 - The extent of spiral shocks is limited by too large M_{\perp} , especially in fast-arm models.
- Arm pitch angle
 - The arm pitch angle of gaseous arms is in general smaller than that of the stellar arms.

• Dynamics

- Gas inflows/outflows by spiral shocks
 - Spiral arms can be efficient to transport the gas from outside to the central region at a rate $dM_{tot}/dt \sim 0.3-3.0 M_{\odot} yr^{-1}$, provided that the spiral arms have quite low Ω_p so as to have a large CR radius.
 - The inflowing gas will increase the mass in the galactic center, possibly fueling star formation.

→ It would be interesting to study how star formation is enhanced in nuclear rings by addition of outer spiral arms.

➡ Talk by Woo-Young Seo

Thank You

